3, 5- DINITROBENZOYL CHLORIDE. A USEFUL REAGENT FOR THE DEHYDRATION OF ALDOXIMES AND CARBOXAMIDES UNDER MILD CONDITIONS A. Abhari M. Bolourtchian, A. Saednya*1 ### **Abstract** 3,5- dinitrobenzoyl chloride-pyridine system has been used for dehydration of aldoximes and carboxamides at room temperature. # Introduction Since we have reported a convenient method for converting carboxamides and aldoximes to nitriles [1], other dehydrating reagents; aluminium iodide [2] di-2-pyridyl sulphite [3] 1,1-sulfinyl-bis -1,2,4-triazole [4] thiophthalylium salts [5] trichloromethyl chloroformate [6] and N,N- dimethylchlorosulphitemethaniminium-chloride [7], have been developed. In most cases, the reagents used are not easily available and should be prepared before the dehydration is done. Now we wish to report 3,5- dinitrobenzoyl chlorie as an easily available and handling reagent for preparation of nitriles from aldoximes and carboxamides under mild conditions. ## Result To a stirred solution of aldoxime or carboxamide (50 mmol) and pyridine (100 mmol) in dichloromethane (30 ml), a solution of 3, 5-dinitrobenzoyl chloride (50 mmol) in dichloromethane (50 ml) is added dropwise at 0°C under anhydrous condition. The stirring is continued for 6 hours. After evaporating the solvent, ether (200 ml) is added, the salts are filtered and the filtrate is washed with water (3 \times 20 ml). The residue is chromatographed over neutral aluminium oxide (type I, Brockmann) with petroleum ether-ethyl acetate mixtures. The results are listed in Table 1. R-CO-NH₂ or $$3,5$$ - (NO)₂ C $_6$ H₃ -CO-C1/ Py / CH₂ C12 $_6$ R-CN R-CH=N-OH R= alkyl, aryl Keywords: Dehydration, aldoximes, carboxamides ¹Department of Organic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Islamic Republic of Iran. ² Chemistry and Chemical Engineering Research Center of Iran, P. O. Box 14335-186 Tehran, Islamic Republic of Iran. Table 1. | Substrate | Product ^a | Yield ^b | mp or bp c/ton | |---|---|--------------------|----------------| | C ₆ H ₅ -CH=N-0H | C ₆ H ₅ -CN | 80 | 69/10 | | 4-Me-C ₆ H ₄ -CH=N-OH | 4-Me-C ₆ H ₄ -CN | 77 | 107-109/6 | | C ₆ H ₅ -CH=CH-CH=N-OH | C ₆ H ₅ -CH=CH-CN | 87 | 97/2 | | n-C ₇ H ₁₅ -CH=N-OH | n-C ₇ H ₁₅ -CN | 84 | 79/10 | | C ₆ H ₅ -CO-NH ₂ | C ₆ H ₅ -CN | 84 | 69/10 | | 4-Me-C ₆ H ₄ -CO-NH ₂ | 4-Me-C ₆ H ₄ -CN | 82 | 107-109/6 | | C ₆ H ₅ -CH=CH-CO-NH ₂ | C ₆ H ₅ -CH=CH-CN | 90 | 97/2 | | n-C ₇ H ₁₅ -CO-NH ₂ | n-C ₇ H ₁₅ -CN | 93 | 79/10 | a) Yield of isolated pure product. b) Products were characterized by comparison of their mp, tlc. IR, ¹H-nmr data with those of authentic samples. # References - a) A. Saednya, Synthesis, 784 (1983). b) A. Saednya, Synthesis, 184, (1985). - 2. D. Konwar, R. C. Boruah, J. S. Sandhu, *Tetrahedron Lett.*, 1063, (1990) and references cited therein. - 3. S. Kim, K. Y. Yi, ibid., 1925, (1986). - 4. S. Kim, S. Yang, J. R. Cho, Bull. Korean Chem. Soc. 9(4), - 268, C. A. 110: 212698y, (1988). - D. A. Oparin, V. A. Shalygina, Zh. Org. Khim, 22 (4) . 886. C. A. 106: 138036e, (1986). - 6- K. Maj, G. Patil, Tetrahedron Lett., 2203 (1986). - 7. A. Arrieta, J. M. Aizpurua, C. Palomo, ibid, 3365. (1984).